Lasso.jl Documentation

Release 0.0.1

Simon Kornblith

December 16, 2016

Contents

1	Lasso paths	3
2	Fused Lasso and trend filtering	7
3	Indices and tables	9

Contents:

Lasso paths

fit (LassoPath, X, y, d=Normal(), l=canonicallink(d); ...)

Fits a linear or generalized linear Lasso path given the design matrix X and response y:

$$\underset{\beta}{\operatorname{argmin}} - \frac{1}{N}\mathcal{L}(y|X,\beta) + \lambda \left[(1-\alpha)\frac{1}{2} \|\beta\|_{2}^{2} + \alpha \|\beta\|_{1} \right]$$

The optional argument *d* specifies the conditional distribution of response, while *l* specifies the link function. Lasso.jl inherits supported distributions and link functions from GLM.jl. The default is to fit an linear Lasso path, i.e., *d=Normal()*, *l=IdentityLink()*, or $\mathcal{L}(y|X,\beta) = -\frac{1}{2}||y - X\beta||_2^2 + C$

Keyword arguments:

4

name	description	default
wts	Weights for each observation	ones(length(y))
offset	Offset of each observation	<pre>zeros(length(y))</pre>
α	Elastic Net parameter in interval [0,	1
	1]. Controls the tradeoff between	
	L1 and L2 regularization. $\alpha = 1$	
	fits a pure Lasso model, while $\alpha =$	
	0 would fit a pure ridge regression	
	model.	
	Note: Do not set $\alpha = 0$. There	
	are methods for fitting pure ridge	
	regression models that are substan-	
	tially more efficient than the co-	
	ordinate descent procedure used in	
	Lasso.jl.	
λ , n λ , λ minratio	Control the values of λ along path	$n\lambda = 100$
	at which models are fit.	If more observations than predic-
	λ can be used to specify a spe-	tors, λ minratio = 1e-4. Oth-
	cific set of λ values at which mod-	erwise, λ minratio = 0.001.
	els should be fit. If λ is un-	
	specified, Lasso.jl selects $n\lambda$ log-	
	arithmically spaced λ values from	
	λ_{\max} , the smallest λ value yielding	
	a null model, to λ minratio * λ_{max} .	
	If the proportion of deviance ex-	
	plained exceeds 0.999 or the dif-	
	ference between the deviance ex-	
	plained by successive λ values falls	
	below 10^{-5} , the path stops early.	
standardize	Whether to standardize predictors	true
	to unit standard deviation before fit-	
	ting.	
intercept	Whether to fit an (unpenalized)	true
	model intercept.	
algorithm	Algorithm to use. The NaiveCo-	NaiveCoordinateDescent if more
	ordinateDescent algorithm, which	than 5x as many predictors as ob-
	iteratively computes the dot prod-	servations or model is a GLM.
	uct of the predictors with the resid-	CovarianceCoordinateDescent oth-
	uals, as opposed to the Covari-	erwise.
	anceCoordinateDescent algorithm,	
	which uses a precomputed Gram	
	matrix. NaiveCoordinateDescent	
	is typically faster when there are	
	many predictors that will not enter	
	ized linear models	
randomiza	Whather to rendomize the order in	$\pm m_{0}$ (if inlices = 0.4)
randomize	whether to randomize the order in	true (11 juna >= 0.4)
	which coefficients are updated by	
	ticelly speed convergence if coeffi	
	cients are highly correlated but is	
	only supported under Julia 0.4	
maxncoef	The maximum number of coeffi	min(size(X 2)
	cients allowed in the model. If ev	2 + ci z = (X - 1))
	ceeded an error will be thrown	
dofit	Whether to fit the model upon con-	true
	struction. If <i>false</i> , the model can be	Chapter 1. Lasso paths
	fit later by calling <i>fit!(model)</i> .	
cd tol	The tolerance for coordinate de-	1e-7
	scent iterations iterations in the in-	

field	description		
λ	Vector of λ values corresponding to each fit model along the path		
coefs	SparseMatrixCSC of model coefficients. Columns correspond to fit models; rows correspond to		
	predictors		
b0	Vector of model intercepts for each fit model		
pct_dev	Vector of proportion of deviance explained values for each fit model		
nulldev	The deviance of the null model (including the intercept, if specified)		
nullb0	The intercept of the null model, or 0 if no intercept was fit		
niter	Total number of coordinate descent iterations required to fit all models		

fit returns a LassoPath object describing the fit coefficients and values of λ along the Lasso path. The following fields are intended for external use:

For details of the algorithm, see Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1.

Fused Lasso and trend filtering

fit (*FusedLasso*, y, λ) Fits the fused Lasso m

Fits the fused Lasso model:

$$\operatorname{argmin}_{\beta} \frac{1}{2} \sum_{k=1}^{N} (y_k - \beta_k)^2 + \lambda \sum_{k=2}^{N} |\beta_k - \beta_{k-1}|$$

The model coefficients can be obtained by calling coef on the returned model object.

For details of the algorithm, see Johnson, N. A. (2013). A dynamic programming algorithm for the fused lasso and L0-segmentation. Journal of Computational and Graphical Statistics, 22(2), 246–260. doi:10.1080/10618600.2012.681238

fit (*TrendFilter*, *y*, *order*, λ)

Fits the trend filter model:

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{k=1}^{N} (y_k - \beta_k)^2 + \lambda \| D^{(k+1)} \beta_k \|_1$$

Where $D^{(k+1)}$ is the discrete difference operator of order k+1. The model coefficients can be obtained by calling coef on the returned model object.

For details of the algorithm, see Ramdas, A., & Tibshirani, R. J. (2014). Fast and flexible ADMM algorithms for trend filtering. arXiv Preprint arXiv:1406.2082. Retrieved from http://arxiv.org/abs/1406.2082

CHAPTER 3

Indices and tables

- genindex
- modindex
- search

Index

F

fit() (built-in function), 3, 7