Lasso.jl Documentation

Release 0.0.1

Simon Kornblith

Contents

1	Lasso paths	3
2	Fused Lasso and trend filtering	7
3	Indices and tables	9

Contents:

Contents 1

2 Contents

CHAPTER 1

Lasso paths

fit (LassoPath, X, y, d=Normal(), l=canonicallink(d); ...)

Fits a linear or generalized linear Lasso path given the design matrix X and response y:

$$\underset{\beta}{\operatorname{argmin}} - \frac{1}{N} \mathcal{L}(y|X,\beta) + \lambda \left[(1-\alpha) \frac{1}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right]$$

The optional argument d specifies the conditional distribution of response, while l specifies the link function. Lasso.jl inherits supported distributions and link functions from GLM.jl. The default is to fit an linear Lasso path, i.e., d=Normal(), l=IdentityLink(), or $\mathcal{L}(y|X,\beta) = -\frac{1}{2}\|y - X\beta\|_2^2 + C$

Keyword arguments:

name	description	default
wts	Weights for each observation	ones(length(y))
offset	Offset of each observation	zeros(length(y))
α	Elastic Net parameter in interval	1
	[0, 1]. Controls the tradeoff be-	
	tween L1 and L2 regularization. α	
	= 1 fits a pure Lasso model, while	
	$\alpha = 0$ would fit a pure ridge re-	
	gression model.	
	Note : Do not set $\alpha = 0$. There are	
	methods for fitting pure ridge re-	
	gression models that are substan-	
	tially more efficient than the coor-	
	dinate descent procedure used in	
	Lasso.jl.	
λ , $n\lambda$, λ minratio	Control the values of λ along path	$n\lambda = 100$
	at which models are fit.	If more observations than pre
	λ can be used to specify a specific	dictors, λ minratio = 1e-4
	set of λ values at which models	Otherwise, λ minratio = 0.
	should be fit. If λ is unspecified,	001.
	Lasso.jl selects $n\lambda$ logarithmically	
	spaced λ values from λ_{max} , the	
	smallest λ value yielding a null	
	model, to λ minratio * λ_{max} . If the	
	proportion of deviance explained	
	exceeds 0.999 or the difference	
	between the deviance explained	
	by successive λ values falls below	
standardize	10 ⁻⁵ , the path stops early.	+ 2010
standardize	Whether to standardize predictors to unit standard deviation before	true
	fitting.	
intercept	Whether to fit an (unpenalized)	true
тегеері	model intercept.	Cluc
algorithm	Algorithm to use. The NaiveCo-	NaiveCoordinateDescent if more
argorianii	ordinateDescent algorithm, which	than 5x as many predictors a
	iteratively computes the dot prod-	observations or model is a GLM
	uct of the predictors with the	CovarianceCoordinateDescent
	residuals, as opposed to the Co-	otherwise.
	varianceCoordinateDescent algo-	
	rithm, which uses a precomputed	
	Gram matrix. NaiveCoordinat-	
	eDescent is typically faster when	
	there are many predictors that will	
	not enter the model or when fitting	
	generalized linear models.	
randomize	Whether to randomize the order in	true (if julia >= 0.4)
	which coefficients are updated by	
	coordinate descent. This can dras-	
	tically speed convergence if coef-	
	ficients are highly correlated, but	
	is only supported under Julia 0.4.	
maxncoef	The maximum number of coeffi-	min(size(X, 2),
	cients allowed in the model. If ex-	2*size(X, 1))
	ceeded, an error will be thrown.	
dofit	Whether to fit the model upon	true Chapter 1. Lasso pat
	construction. If false, the	
	model can be fit later by calling	
	fit!(model)	

fit! (model).

fit returns a LassoPath object describing the fit coefficients and values of λ along the Lasso path. The following fields are intended for external use:

field	description		
λ	Vector of λ values corresponding to each fit model along the path		
coefs	SparseMatrixCSC of model coefficients. Columns correspond to fit models; rows correspond to		
	predictors		
b0	Vector of model intercepts for each fit model		
pct_dev	Vector of proportion of deviance explained values for each fit model		
nulldev	The deviance of the null model (including the intercept, if specified)		
nullb0	The intercept of the null model, or 0 if no intercept was fit		
niter	Total number of coordinate descent iterations required to fit all models		

For details of the algorithm, see Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1.

CHAPTER 2

Fused Lasso and trend filtering

fit (FusedLasso, y, λ)

Fits the fused Lasso model:

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{k=1}^{N} (y_k - \beta_k)^2 + \lambda \sum_{k=2}^{N} |\beta_k - \beta_{k-1}|$$

The model coefficients can be obtained by calling coef on the returned model object.

For details of the algorithm, see Johnson, N. A. (2013). A dynamic programming algorithm for the fused lasso and L0-segmentation. Journal of Computational and Graphical Statistics, 22(2), 246–260. doi:10.1080/10618600.2012.681238

fit (TrendFilter, y, order, λ)

Fits the trend filter model:

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{k=1}^{N} (y_k - \beta_k)^2 + \lambda \|D^{(k+1)}\beta_k\|_1$$

Where $D^{(k+1)}$ is the discrete difference operator of order k+1. The model coefficients can be obtained by calling coef on the returned model object.

For details of the algorithm, see Ramdas, A., & Tibshirani, R. J. (2014). Fast and flexible ADMM algorithms for trend filtering. arXiv Preprint arXiv:1406.2082. Retrieved from http://arxiv.org/abs/1406.2082

$\mathsf{CHAPTER}\,3$

Indices and tables

- genindex
- modindex
- search

lո	٦	ΟV
Ш	ıu	ех

F

fit() (built-in function), 3, 7